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Abstract. One of the potentially effective means for 3D reconstruction
is to reconstruct the scene in a global manner, rather than incrementally,
by fully exploiting available auxiliary information on imaging condition,
such as camera location by GPS, orientation by IMU(or Compass), focal
length from EXIF etc. However these auxiliary information, though in-
formative and valuable, is usually too noisy to be directly usable. In this
paper, we present a global method by taking advantage of such noisy
auxiliary information to improve SfM solving. More specifically, we in-
troduce two effective iterative optimization algorithms directly initiated
with such noisy auxiliary information. One is a robust iterative rotation
estimation algorithm to deal with contaminated EG(epipolar graph), the
other is a robust iterative scene reconstruction algorithm to deal with
noisy GPS data for camera centers initialization. We found that by ex-
clusively focusing on the inliers estimated at the current iteration, called
potential inliers in this work, the optimization process initialized by such
noisy auxiliary information could converge well and efficiently. Our pro-
posed method is evaluated on real images captured by UAV(unmanned
aerial vehicle), StreetView car and conventional digital cameras. Exten-
sive experimental results show that our method performs similarly or
better than many of the state-of-art reconstruction approaches, in terms
of reconstruction accuracy and scene completeness, but more efficient
and scalable for large-scale image datasets.

1 Introduction

With the progress of modern technology, many imaging devices come with built-
in sensors, such as GPS, compass and inclinometer. In addition, UAV (unmanned
aerial vehicle), which is usually equipped with GPS and IMU (inertial measure-
ment unit), has become widely available to generate high resolution DSM (digital
surface model). Fortunately, sensor data are recorded simultaneously during im-
age acquisition phase and from which approximate camera poses, though too
noisy to be directly useful for 3D reconstruction [1, 2], can be obtained.

SfM approaches have been widely used to build 3D scene from images in the
past few years. The state-of-art IBA(incremental bundle adjustment) approach-
es [3–5] start by selecting a few seed images for initial reconstruction, then re-
peatedly add new images to incrementally reconstruct the scene and refine the
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result by bundle adjustment. Although such an incremental mode finds its suc-
cess in a variety of applications, it suffers from drift, large error accumulation,
and heavy computational load. Contrary to IBA, many global algorithms [1, 2,

(a) (b)

(c)

Fig. 1. 3D reconstruction results: (a) reconstruction by a conventional moving digital
camera (MP; 144 images); (b) reconstruction by UAV (TK2; 501 images); (c) recon-
struction by StreetView car (SV1; 2468 images). In order to better reflect the scene
structure, here the results are further reconstructed by dense reconstruction method
PMVS2 [6], which is a follow-up step of our method.

7–10] which simultaneously operate on all images are reported recently, in which
the bundle adjustment, a time consuming module, is activated once rather than
repeatedly. However, sometimes such global methods do not work well because
the estimated parameters are not accurate enough for the bundle adjustment.

In this paper, we present a novel global strategy to solve SfM problem by fully
exploiting available noisy auxiliary imaging information, such as GPS, IMU info,
and compass angle. One key advantage of our method is its versatility, applicable
to both ordered images (Fig. 1b and Fig. 1c) and unordered images (Fig. 1a).
Another advantage of our method is its computational efficiency, and it works
well for large scene reconstruction as shown in our experiments. For example,
our SV2 image dataset contains 16600 images. Our proposed method has three
steps. The first one is to build an EG (epipolar graph). The second one is a robust
iterative rotation estimation. Since even under RANSAC paradigm, pairwise
geometry estimates may still contain gross errors, global camera rotations are
iteratively estimated by rotation consistency in this step. The last step is to
iteratively perform triangulation and bundle adjustment. In order to tackle the
problem of gross errors in pairwise geometry estimates as well as the inaccuracy
of initializing camera centers with noisy GPS data, we introduce a concept called
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“potential inlier” for the iterative optimization process, which constitutes one of
our major novelties.

We think although auxiliary imaging information is not accurate enough,
it still contains some degree of truthfulness on the imaging condition, and can
be used as a good initializer for our potential inliers selection. In our work, a
constraint is considered as a potential inlier if its residual at the current iteration
is less than an adaptive threshold. Note that by such a setting, a potential inlier
is not necessarily meant a real inlier, it is merely meant that the probability
of a potential inlier to be a real inlier is much larger than a potential outlier.
In addition, potential inlier is meaningful only at the current iteration this is
because a potential inlier is changeable at its status from iteration to iteration.
It is possible a potential inlier at the current iteration changes to a potential
outlier at the next iteration, and vice versus. But with a good initialization of
potential inliers with auxiliary imaging information and iteratively filtering out
the potential outliers, our proposed iterative method can rapidly converge with
a few iterations, as demonstrated in our later experiments. To some degree, our
proposed iterative method possesses some analogy with the well-known Boosting
scheme. In Boosting, by iteratively combining weak classifiers, a strong classifier
is obtained. In our method, by iteratively filtering potential outliers, potential
inliers converge to real inliers, and the parameters, such as camera poses and
3D scene points, become more and more precise. Unlike Boosting where the
convergence is slow due to the less impact of later weak classifiers, our method
is quite computationally efficient as demonstrated in our later experiments. This
computational efficiency is mainly due to the following two interleaved factors:
Firstly, only potential inliers are used, which is a subset of the total constraints.
Second, with iteration going on, the set of the selected potential inliers contains
less and less real outliers, and the estimated parameters become closer and closer
to the correct ones, then less number of iterations is needed.

Our proposed method is validated on various datasets, including images cap-
tured by UAV, StreetView car and a moving conventional digital camera. The
reconstruction results are compared with those by state–of–art methods, such as
Bundler [3], MRF-based [1], VSFM [8], OpenMVG [9] and Linear Method [10].

2 Related Work

Many reported approaches [3–5, 11] to solve SfM problem are based on incre-
mental mode which repeatedly uses bundle adjustment to refine the scene and
camera poses. The state-of-art representative is Bundler [3], which may suffer
from drift due to the accumulation of errors in addition to its heavy computa-
tional load when handling large image dataset. Besides, Bundler’s reconstruction
result largely depends on the selection rule of the seed images and the order of
subsequent image addition. Haner et al. [11] presented a new selection and addi-
tion rule which makes use of covariance propagation, and they pointed out that
a well-determined camera should have both small estimated covariance and low
reprojection error for next view planning. For Bundler, the worst-case running
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time of image matching part and bundle adjustment part is O(n2) and O(n4) in
the number of images respectively, which becomes prohibitive when the number
of images is large, many attempts are proposed to tackle this problem recently.

For the image matching part, graph-based algorithm [12, 13] are proposed to
improve the efficiency by pruning original image set. However, the graph con-
struction is always time consuming, and sometimes the completeness of scene
cannot be guaranteed. The other typical solution is to employ image retrieval
method to explore candidate matching image pairs [14, 15]. Nister et al. [14] pro-
posed a vocabulary tree based approach to find out potential matching image
pairs. Besides, based on the rank of Hamming distance, Cheng et al. [16] pro-
posed a Cascade Hashing strategy to speed up the image matching. For bundle
adjustment part, global methods [1, 2, 7–10], which only optimize the reconstruc-
tion result once, are considered of great potentiality. These approaches usually
take three steps to solve the SfM problem. The first step is to compute camera
rotations by rotation consistency, the second is to calculate camera translations,
and the third one is to refine camera poses and 3D points by performing a fi-
nal bundle adjustment. In particular, Jiang et al. [10] proposed a linear method
for global camera pose registration from pairwise relative poses. This method
requires a large set of precise pairwise geometries to perform the SVD decompo-
sition. However, for many real applications, for example for StreetView images,
pairwise geometry estimates are always noisy. As a result, many images may be
discarded by [10] because their weak visual connections with other images.

Other works fuse auxiliary imaging information during the SfM solving [17,
18]. Carceroni et al. [17] computed camera rotations by using GPS. Pollefeys et
al. [18] reported a real-time SfM in urban scene reconstruction with the support
of GPS/IMU sensors. However, these two methods rely on high-precision GPS
sensors which are not available in common devices. Several methods [1, 19] are
proposed to reconstruct 3D scene by exploiting noisy auxiliary imaging infor-
mation. Crandall et al. [1] proposed a discrete-continuous optimization method,
in which noisy auxiliary info (GPS and vertical vanishing point) is incorporated
into the SfM process. Note that VPs (Vertical vanishing points) are used to esti-
mate the tilt angle. They used BP (belief propagation) on a discretized space of
camera orientations and 2D camera positions to find a good parameter initial-
ization, then run non-linear least squares and bundle adjustment to refine these
estimates. Sinha et al. [19] also proposed a linear SfM method in which vanishing
points are incorporated. However, these two methods are not applicable to the
SfM problem on UAV images because the VPs cannot be estimated when the
UAV faces a large tract of land where evident lines is not available. Although the
tilt angle is available in IMU, it is usually unusable because of the influence of
gravity. Besides, the extent of scene should be predetermined in [1], and discrete
position labels take up a huge storage when the scene covers a large area.

In this paper, we present an efficient and versatile global approach, which is
fully exploiting noisy auxiliary imaging information, to improve the SfM solving.
Our proposed method is applicable to various kinds of images, including common
digital images, UAV images and StreetView images.
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3 A global approach by iteratively optimizing potential
inliers

Our SfM method, shown in Fig. 2, consists of three main steps. Step1 is a pre-
processing step, its main aim is to build an EG (epipolar graph). In this step,
an image retrieval technique is used to speed up the image matching. In Step2,

Fig. 2. The flowchart of our method. Step1: features are detected and then matched
across images. Step2: rotation estimation by iteratively optimizing potential pairwise
geometry inliers(showed by red solid lines) and discarding gross pairwise geometries
(showed by black dotted lines). Step3: scene estimation by iteratively optimizing po-
tential track inliers(showed by red solid lines) and discarding gross tracks (showed by
black dotted lines). Finally, camera poses showed by cyan cones and 3D scene points
are obtained.

global camera rotations are iteratively estimated through rotation consistency.
At each iteration, in order to increase the percentage of real edge inliers, gross
edge outliers are filtered out. In Step3, camera poses and 3D scene points are
iteratively estimated. In this step, we focus on tackling inevitable track outliers
and the resulting inaccuracy problem by initializing camera centers with noisy
GPS data. Next we elaborate on these three steps.

3.1 Step 1: Pre-processing

At first, SIFT points are extracted from images. Note that raw GPS data is in the
form of longitude, latitude and altitude defined in the WGS84 coordinate system.
For the convenience of further processing, these data are converted into the
ECEF (Earth Centered, Earth Fixed) coordinate system, which is usually called
the local east-north-up. Here ECEF is used as the global coordinate system.

In order to accelerate the matching process, a vocabulary tree [14] is used to
detect candidate matching image pairs. Furthermore, based on GPS, too distant
image pairs are discarded. For each candidate pair, we compute SIFT matches
using Cascade Hashing strategy [16]. Each 3D scene point is identified by finding
their corresponding track−interest points across multiple images which have sim-
ilar SIFT descriptors. However, sometimes a feature point may be contained by
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different tracks. Since such tracks are ambiguous when used for subsequent tri-
angulation and bundle adjustment, they are considered unstable and discarded.
After matching relevant images, geometric verification based on 5-point algo-
rithm [20] is performed. Two images are considered as a matched pair if the
number of their matched SIFT points is more than a threshold (in our work, it
is set to 20). Moreover, pairwise relative rotations and translation directions are
computed from every matched pair of images.

The final matching result is represented by a graph called EG (epipolar
graph), whose vertices V = {I1, I2 · · · IN} correspond to images and edges
E = {eij |i, j ∈ V } link matched image pairs, then the LCC (largest connected
component) of EG is extracted and used in the subsequent reconstruction.

3.2 Step 2: Robust Iterative Rotation Estimation

Coarse initial camera rotations defined under the ECEF coordinate system can
be easily obtained from camera orientations. For UAV, the orientation is ob-
tained by noisy IMU. For conventional digital camera equipped with compass,
the orientation is initialized by compass and tilt angle(VP is calculated by the
method [21]). For StreetView car which only equipped with a GPS sensor, the
method proposed by Crandall [1] is used to get a rough orientation.

Given a pairwise relative pose estimate (Rpq, tpq) between cameras p and q,
the problem of rotation estimation can be formulated as a search for the absolute
orthonormal rotations Rp, Rq, such that the following constraint is satisfied:

Rpq = RpR
T
q (1)

Every edge in EG forms such a constraint. Thus, an overdetermined equation
system is obtained since EG always consists of redundant edges. Note that the
residual of an edge between cameras p and q is measured by the Frobenius norm
of ‖Rpq − RpR

T
q ‖. As proposed by Martinec [22], the solution of this overde-

termined equation system can be initially computed without considering the
orthonormality constraint and then enforced by subsequently projecting the ap-
proximate rotation to the closest rotation under Frobenius norm using SVD de-
composition. However there always exist outliers, whose relative pose estimates
are either incorrect or the epipolar constraints are actually non-existent, in EG.

In order to tackle the inevitable edge outliers in EG and increase the percent-
age of real edge inliers in the optimization process, we propose a robust rotation
estimation algorithm by iteratively and exclusively optimizing the so-called po-
tential edge inliers. An edge in EG is regarded as a potential edge inlier in the ith

iteration if its corresponding residual (‖Rpq −RpR
T
q ‖F ) is less than a threshold

T (i). Given a threshold α, T (i) in the ith iteration is computed as follows:

T (i) = min{T :

∑M
j=1 η

(i)
j

M
≥ α} (2)

s.t. η
(i)
j =

{
0, if r

(i)
j > T ;

1, if r
(i)
j ≤ T ;

(3)
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where r
(i)
j is the residual of the jth edge in the ith iteration; j = 1...M ; M is the

number of edges in the LCC of EG. Moreover, the following covering condition
should be satisfied: the current potential edge inliers should cover all the vertices
in the LCC of EG. If this condition is not satisfied, the threshold α in Eq. (2)
should be increased. In our work, initial α is set to 0.9. With this threshold, the
goal of Eq. (2) is to calculate a minimal threshold T (i) such that the percentage
of potential edge inliers over the total edges is equal or larger than 90%. By
ordering edge residuals from small to large, we consider that the last 10% of
EGs are erroneous or potential outliers, then discarded in the current iteration.
Discarding such EGs will increase the percentage of real edge inliers over used
EGs in the optimization.

Note that some real edge inliers may be labelled as potential edge outliers
due to the inaccurate camera rotations as well as the empirical threshold α. In
order to tackle such inaccuracy problem and make more real edge inliers be used
in the optimization, we estimate the absolute camera rotations R = {R1, ..., RN}
iteratively by minimizing the sum of the residuals of the potential edge inliers,
where N is the number of images. In the ith iteration:

R(i+1) = min{R :

N∑
p=1

N∑
q=1

E(i)
pq ‖Rpq −R(i)

p R(i)T
q ‖F } (4)

subject to that each matrix in R is orthonormal. E
(i)
pq is set to 1 if the edge

between image p and image q is a potential edge inlier in the ith iteration, oth-
erwise set to 0. With the camera rotations become more and more accurate with
iteration, more and more real edge inliers will be included in the optimization
process. For the sake of efficiency, the iteration is usually stopped when the num-
ber of the changes of the potential edge inliers between two consecutive iterations
is less than a threshold (in our work, it is set to 20).

3.3 Step 3: Robust Iterative Scene Reconstruction

The camera projection matrix set P = {Pi; i = 1...N}, can be approximately
initialized as:

Pi = KiRi[I −Ci] =

fexif i 0 0
0 fexif i 0
0 0 1

Ri[I −Ci] (5)

where fexif i denotes the focal length from the ith image EXIF tag; Ri denotes
the estimated absolute rotation of image i in Step 2; I denotes the identity ma-
trix; Ci denotes the converted GPS of image i. Given the camera projection
matrices and a track set of corresponding images, 3D scene points can be ini-
tially reconstructed by triangulation and bundle adjustment. However, due to
the inaccuracy of the current initialization, mostly one-time bundle adjustmen-
t is not sufficient to produce satisfactory reconstruction result, and additional
alternated triangulation and bundle adjustment process need to be carried out.
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For each track, we pick the image pair which has the maximal baseline among
all possible visible image pairs to perform the triangulation. For the robustness
concern, a 3D point will not be triangulated if the maximal baseline of its cor-
responding track is too small, and a 3D point is saved as a candidate for further
processing when its current average reprojection error across all visible images
is less than 20 pixels and maximal reprojection error across all visible images is
less than 100 pixels.

Given the camera projection matrix set P and the set of currently reliable
reconstructed 3D points X, the discrepancy between the measured 2D image
point locations and predicted 3D scene points is minimized subsequently. For N
images and K tracks, the cost function G is formulated as the weighted geometric
projection errors:

G (P,X) =

N∑
i=1

K∑
j=1

vij‖xij − γ(Pi, Xj)‖2 (6)

where 2D image point locations xij are the observation of the 3D point Xj in
the ith image; vij is set to 1 if Xj is visible in the ith image, otherwise set to
0. γ(Pi, Xj) denotes the projection of Xj in the ith image. Note that in our
work only the first two camera radial distortion parameters are used. The non-
linear least square problem defined in Eq. (6) always needs a good parameter
initialization. However, converted GPS locations are not precise enough to be
used as the camera positions initialization. Besides, there always exist outliers,
which are caused by mismatching, in tracks set. Thus, direct optimization on
Eq. (6) is not a sensible choice, and an iterative approach is here proposed by
only performing optimization on potential track inliers to tackle this problem.

A track is regarded as a potential track inlier in the lth iteration if its average
reprojection error across visible images is less than H(l). Given a threshold β,
H(l) in the lth iteration is calculated as :

H(l) = min{H :

∑K
j=1 δ

(l)
j

K
≥ β} (7)

s.t. δ
(l)
j =

{
0, if r

(l)
j > H;

1, if r
(l)
j ≤ H;

(8)

where r
(l)
j denotes the averaged reprojection error across all visible images of

the jth track in the lth iteration; j = 1...K; K denotes the number of tracks. In
addition, these potential track inliers should also satisfy the following covering
condition: the visible images of the current potential track inliers should cover
all vertices in the LCC of EG. If this condition is not satisfied, the potential
track inliers should be recomputed by increasing β. Since there are still outliers
present in the obtained potential tracks inliers, we use a robust Huber norm
by setting its parameter as 25 pixels on the reprojection error. In our work, β
is set to 0.9. Similarly as that in Section 3.2, by ordering average reprojection
errors from small to large, the last 10% of the tracks are considered as potential
outliers, and they are not used in the optimization of current iteration.
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Considering that the focal lengths obtained from image EXIF tags are rel-
atively reliable, an enforcement term is added to the cost function (Eq. (6)).
As a result, at the lth iteration, our cost function on potential track inliers is
formulated as:

F
(
P(l),X(l)

)
= Ghuber

(
P(l),X(l)

)
e
(l)
j +

N∑
i=1

λ
(
f
(l)
i − fexif i

)2
(9)

where f
(l)
i is the focal length of the ith image in the lth iteration; e

(l)
j is set to

1 if the jth track is considered as a potential track inlier in the lth iteration,
otherwise set to 0. Conventionally, repeated bundle adjustment is regarded as
the most time-consuming part in 3D reconstruction. However, as our following
experimental part shows, the time-cost of repeated bundle adjustment in this
step is acceptable. The reason is two-fold: on the one hand, only a part of tracks
are optimized in each iteration, and the iteration number is always less than 5;
on the other hand, the sparse structure of SfM problem is taken into account. In
our work, the weighting factor λ in Eq. (9) is set to 10−4, and the version(1.8.0)
of ceres-solver [23] is adopted to perform the bundle adjustment.

4 Experiments

The experiments are carried out on a PC with an Intel Core2 i5-2400 3.10GHz
CPU(4 cores) and 16G RAM. Our method is evaluated on real images captured
by different devices, including (1) an UAV with integrated GPS and IMU sensors;
(2) a conventional digital camera with a GPS receiver and compass inside; (3)
a StreetView car equipped with a GPS sensor. The specifications of five image
datasets are listed in Table 1. Due to the limited space, only the first 4 datasets
are compared in detail.

4.1 Comparison Methods and Comparison Criteria

Our method is compared with Bundler [3], MRF-based method [1], OpenMVG [9],
VSFM [8] and the Linear Method [10]. Note that since OpenMVG in [24] requires
images to have the same initial focal length, OpenMVG cannot be run on MP.
In addition, MRF-based approach [1] stresses the importance of tilt. Due to the
lack of straight lines in UAV images, MRF-based method cannot be performed
on TK1 and TK2.

Both qualitative and quantitative comparisons are carried out. In the qual-
itative comparison, not only the scene structures are assessed, but the camera
trajectories are also compared for the UAV and StreetView images. Gross cal-
ibration errors or evident artifacts are the direct indicators of the algorithm′s
inadequacy. In the quantitative comparison, we evaluate the accuracy of the re-
constructed cameras by comparing their positions to the ground truth locations.
For the Arts Quad dataset, the truth GPS locations are publicly available in
[1]. The running-time of the evaluated algorithms after image matching part is
recorded to compare the computational load.
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Table 1. Specifications of image datasets

Name
# of images

in LCC
Capturing

device
GPS

precision
IMU/Compass

precision
same initial
focal length?

MP 144 Canon 5D Mark III 5 ∼ 10m 5 ∼ 10◦ no

TK1 145 UAV 5 ∼ 10m 5 ∼ 10◦ yes

TK2 501 UAV 5 ∼ 10m 5 ∼ 10◦ yes

SV1 2468 StreetView Car 3 ∼ 5m – yes

SV2 16600 StreetView Car 3 ∼ 5m – yes

4.2 Results and Analysis

Results of Step 3. Since Step3 described in Section 3.3 is the key step in our
algorithm, we show its results in Fig. 3 and Fig. 4. It can be clearly seen from
Fig. 3 that our method almost converges after four iterations. Since initial pa-
rameters are not good enough, only a subset of tracks are regarded as potential
track inliers at the first iteration. With iterations going on, more potential track
inliers appear in the subsequent iterations, which indicates that the camera pos-
es become more and more precise. Some results with respect to the iteration

Fig. 3. (a) Number of potential track inliers with respect to the iteration number; (b)
the threshold H(l) with respect to the iteration number.

time are shown in Fig. 4. From the results in the first iteration, it can be seen
that one-off bundle adjustment is obviously not enough when camera centers are
directly initialized with GPS. Specifically, in the result of MP(Iter 1), both cam-
era positions and scene structure are bad and unreasonable. With the iterations
going on, the scene structure becomes more and more precise and reasonable.

Moreover, tracks are always clean in UAV images as no occlusions exist in
the view. However, tracks are always contaminated in images captured by free
shooting or StreetView car because of the large changes of view angles or the
existence of numerous self-symmetric features. In our experiment, relative to
the respective whole tracks, the percentage of final potential track inliers on
MP, TK1, TK2 and SV1 is 54.07%, 89.73%, 89.71%, 59.03%, which shows our
proposed method is robust to both cluttered and clean scenes.
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Iter_1 Iter_2 Iter_3 Iter_4

MP

TK1

Fig. 4. Sparse reconstruction results with respect to the iteration number. Red and
green points denote the camera positions.

Qualitative Comparison. For OpenMVG and Linear Method, accurate cam-
era poses estimation are mainly dependent on the existence of many accurate
triplets. However, triplets are not many in UAV and StreetView images because
the speed of UAV or street view car is usually fast. Especially for StreetView
images, many pairwise geometry estimates are usually not accurate enough. As
shown in Fig. 5, these two methods generate obvious error results on TK1,
TK2 and SV1. Note that the results on MP are comparable among five methods
(Bundler, MRF-based approach, VSFM, Linear Method and our method), which
indicates that most existing SfM methods are more suited for this scenario.

For TK1, the results produced by openMVG and Linear Method are obvious-
ly incomplete. For the camera trajectory of TK1, one obvious calibration error
(a camera is under the scene), which is highlighted by a blue circle, appears in
Bundler’s result. Compared with VSFM’s result on TK1, the camera trajectory
of our result is more reasonable(unreasonable jitters appear in VSFM’s result
highlighted by a blue circle). In addition, for TK2, the result produced by open-
MVG is appearantly wrong. The reason is that OpenMVG does not account the
image distortion. More elaborate reasons are reported by Wu [25]. Furthermore,
results on TK2 produced by Bundler and Linear Method are obviously wrong,
and there are some obvious calibration errors (sudden leap on camera centers)
in VSFM’s result, while our result on TK2 is more reasonable than others.

For SV1, the results produced by Bundler, openMVG and Linear Method are
obviously incomplete or wrong. In order to make the comparison more evident,
the scene structure and camera trajectory of other results are respectively shown
in Fig. 6. For the scene structure, some obvious errors, which are highlighted by
red circles, appear in the results produced by MRF-based approach and VSFM.
For the camera trajectory, our result is more convincing as no obvious jitters
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MP TK1 TK2 SV1

Bundler
[3]

MRF-
based
[1]

Open
MVG[9]

VSFM[8]

Linear
Method
[10]

Our
result

Fig. 5. Sparse reconstruction results on 4 image datasets. Red and green points denote
the camera positions. Blue ellipses mark the sampled unreasonable areas in the results.

MRF-based[1] result VSFM[8]’s result Our result

Fig. 6. The first row shows the reconstruction results on SV1 and the second shows
the corresponding camera centers. Red circles and blue ellipses mark the unreasonable
areas in the reconstructed results.
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appear on the route of car. Two blue ellipses mark the unreasonable parts on
the results of VSFM and MRF-based method.

The reason of why our results are better than those produced by MRF-
based method is mainly due to the following two factors. Firstly, the 2D camera
positions in MRF-based method may be not dense enough (in our experiments,
a label corresponds a 4m*4m square). As a result, parameter initializations may
be not good enough for the bundle adjustment. Secondly, the accuracy of initial
translations in MRF-based method largely depend on the initial selected tracks,
so it is sensitive to track outliers. In sum, in term of qualitative comparison,
our method outperforms the other five ones. Furthermore, our reconstruction
result on SV2 is shown in Fig. 7b where the area marked by red dotted line is
the reconstruction on SV1. Since the other five methods could not work well
on SV1, they are not run on SV2. From our results, many dense reconstruction
methods can be used. As shown in Fig. 1, dense reconstruction is performed by
PMVS2 [6].
Quantitative evaluation. The accuracy of the calibrated cameras is evaluated
by comparing their positions with ground truth locations. For the dataset Arts
Quad which is publicly available in [1], there are 6514 images in total while 4255
images have geotags, and 348 images with high accurate differential GPS posi-
tions are used as ground truth. Since we need GPS to initilize camera centers,
our method is only performed on geotaged images. The reconstruction results
generated by our method is shown in Fig. 7a, in which 251 out of the 348 ground
truth images are found. Then RANSAC is used to estimate a 3D similarity trans-
formation between the 251 camera locations and their ground truth coordinates.
The registration result shows that our camera positions have a median error of
1.13 meter, which is comparable with 1.16 meter reported by [1].

(a) (b)

Fig. 7. Sampled reconstructions on Arts Quad (a) and SV2 (b). The area marked by
red dotted line in (b) is the reconstruction results on SV1.

Time Efficiency and Scalability. The running-time of OpenMVG [9] is not
compared here because its reconstruction results on our four datasets are either
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Table 2. Running time of our method compared to other methods. (#) denotes the
number of calibrated images by the corresponding method.

Bundler MRF-based VSFM Linear Method Our method

MP 20.1 mins(144) 13.2 mins(144) 1.6 mins(144)1.1 mins(144) 1.8 mins(144)

TK1 (142) – 9.0 mins(145) (79) 7.5 mins(145)

TK212.1hours(501) – (499) (360) 25.5 mins(501)

SV1 (90) 31.2hours(2468) (1910) (179) 5.0 hours(2468)

Table 3. Time-cost comparison between MRF-based method and our method on SV1

Rotations
Estimation

Translations
Estimation

Triangulation
Bundle

Adjustment
Total

time-cost

MRF-based [1] 9.0 mins 30.0 hours 4.0 mins 1.0 hours 31.2 hours

Our method 9.0 mins 0 mins 4.0 mins * 5 4.5 hours 5.0 hours

incomplete or obviously wrong. As a result, the time-cost of our method are
compared with those of other four methods. Neither parallel computation nor
GPU acceleration is used here to ensure the fairness of comparison. Note that
if the cameras is partly calibrated, only the number of calibrated images of the
corresponding method is showed in Table 2. It can be seen from Table 2 that
our method performs better than other approaches on TK1, TK2 and SV1.

Our method is about 6 times faster than MRF-based approach on SV1. The
detailed comparison of these two global reconstruction methods is shown in
Table 3. Obviously, MRF-based approach spends a lot of time in estimating
translations, while our main time-cost is spent on bundle adjustment. In the
third row of Table 3, 4.0mins*5 is meant that each triangulation spends 4.0
mins and 5 iterations are carried out. The results show that our method has a
better scalability than the MRF-based approach.

5 Conclusion

In this paper, we propose an efficient and accurate reconstruction method by
fully exploiting auxiliary imaging information. The main novelty of our work is
the exclusive use of the so-called potential inliers at each iterative optimization
step to effectively deal with the inevitable constraint outliers, which is made pos-
sible in turn by employing auxiliary imaging information. Experimental results
show that our approach outperforms the state-of-art reconstruction approach-
es, especially for UAV and StreetView images. In the future work, the iterative
convergence of potential inliers to true inliers will be further investigated.
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